Optimal Additive Quaternary Codes of Low Dimension

نویسندگان

چکیده

An additive quaternary [n,k,d]-code (length n, dimension k, minimum distance d) is a 2k-dimensional \mathbb F 2 -vector space of n-tuples with entries in ⊕\mathbb (the 2-dimensional vector over ) Hamming d. We determine the optimal parameters codes k ≤ 3. The most challenging case k=2.5. prove that an [n,2.5,d]-code where d <; n-1 exists if and only 3(n-d) ≥ d/2+d/4+d/8 articular, we construct new 2.5-dimensional codes. As by-product, give direct proof for fact binary linear [3m,5,2e] -code e m-1 Griesmer bound 3(m-e) e/2+e/4+e/8 satisfied.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nonexistence of some quaternary linear codes of dimension 5

We prove the nonexistence of linear codes with parameters [400; 5; 299]4, [401; 5; 300]4, [405; 5; 303]4, [406; 5; 304]4, [485; 5; 363]4 and [486; 5; 364]4 attaining the Griesmer bound. For that purpose we give a characterization of linear codes with parameters [86; 4; 64]4, [101; 4; 75]4, [102; 4; 76]4 and [122; 4; 91]4. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

Some codes related to BCH-codes of low dimension

We construct a large number of record-breaking binary, ternary and quaternary codes. Our methods involve the study of BCH-codes over larger fields, concatenation, construction X and variants of the Griesmer construction (residual codes). 1 Review of the theory Let IFq be the ground field, F = IFq2 . Denote the interval {i, i + 1, . . . , j} ⊂ ZZ/(q−1)ZZ by [i, j]. Let A = [i, j] ⊂ ZZ/(q−1)ZZ. I...

متن کامل

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

Optimal Linear Codes of Dimension 4 over GF(5)

[48] __, " On complexity of trellis structure of linear block codes, " IEEE [49] T. Klgve, " Upperbounds on codes correcting asymmebic errors, " IEEE [SO] __, " Minimum support weights of binary codes, " IEEE Trans. Inform. [53] A. Lafourcade and A. Vardy, " Asymptotically good codes have infinite trellis comwlexitv. " IEEE Duns. issue on " Codes and Finite Geometries "). [59] __, " The shift b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3085577