Optimal Additive Quaternary Codes of Low Dimension
نویسندگان
چکیده
An additive quaternary [n,k,d]-code (length n, dimension k, minimum distance d) is a 2k-dimensional \mathbb F 2 -vector space of n-tuples with entries in ⊕\mathbb (the 2-dimensional vector over ) Hamming d. We determine the optimal parameters codes k ≤ 3. The most challenging case k=2.5. prove that an [n,2.5,d]-code where d <; n-1 exists if and only 3(n-d) ≥ d/2+d/4+d/8 articular, we construct new 2.5-dimensional codes. As by-product, give direct proof for fact binary linear [3m,5,2e] -code e m-1 Griesmer bound 3(m-e) e/2+e/4+e/8 satisfied.
منابع مشابه
The nonexistence of some quaternary linear codes of dimension 5
We prove the nonexistence of linear codes with parameters [400; 5; 299]4, [401; 5; 300]4, [405; 5; 303]4, [406; 5; 304]4, [485; 5; 363]4 and [486; 5; 364]4 attaining the Griesmer bound. For that purpose we give a characterization of linear codes with parameters [86; 4; 64]4, [101; 4; 75]4, [102; 4; 76]4 and [122; 4; 91]4. c © 2001 Elsevier Science B.V. All rights reserved.
متن کاملIsotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملSome codes related to BCH-codes of low dimension
We construct a large number of record-breaking binary, ternary and quaternary codes. Our methods involve the study of BCH-codes over larger fields, concatenation, construction X and variants of the Griesmer construction (residual codes). 1 Review of the theory Let IFq be the ground field, F = IFq2 . Denote the interval {i, i + 1, . . . , j} ⊂ ZZ/(q−1)ZZ by [i, j]. Let A = [i, j] ⊂ ZZ/(q−1)ZZ. I...
متن کاملOptimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملOptimal Linear Codes of Dimension 4 over GF(5)
[48] __, " On complexity of trellis structure of linear block codes, " IEEE [49] T. Klgve, " Upperbounds on codes correcting asymmebic errors, " IEEE [SO] __, " Minimum support weights of binary codes, " IEEE Trans. Inform. [53] A. Lafourcade and A. Vardy, " Asymptotically good codes have infinite trellis comwlexitv. " IEEE Duns. issue on " Codes and Finite Geometries "). [59] __, " The shift b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2021
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2021.3085577